

Artificial Intelligence On Devices With Limited Capabilities

PhD Eng. Marian-Valentin Bănică Prof. Anamaria Rădoi

SID 2025

Sibiu Innovation Days

06-07 November, Sibiu - RO

EMERGING DISRUPTIVE TECHNOLOGIES:

Balancing Innovation, Risks, and Societal Impact

Agenda

- Introduction to Edge Al
- 2. Benefits of Edge AI for Resource-Constrained Devices
- 3. Constraints and Challenges in Edge Al Deployment
- 4. Application Scenarios for Edge Al
- 5. Model Pruning Techniques for Edge Al
- 6. Quantization Techniques for Edge Al
- 7. Knowledge Distillation for Edge Models
- 8. Hardware Alternatives for Edge Al Deployment
- 9. Compiler Toolchains for Edge Al Optimization
- 10. Benchmarking Edge Al Models and Platforms
- 11. Benchmarking Edge Al Models and Platforms
- 12. Future Trends and Case Studies in Edge Al

EMERGING DISRUPTIVE TECHNOLOGIES: Balancing Innovation, Disks, and Societal Impo

Introduction to Edge AI

- Edge Al combines artificial intelligence with edge computing enabling smart data processing and decision-making directly on edge devices.
- Edge Al contrasts with traditional Al by performing computations locally rather than relying on centralized cloud servers.
- This local processing supports real-time, efficient, and resilient Al applications, especially as the number of connected devices grows rapidly.

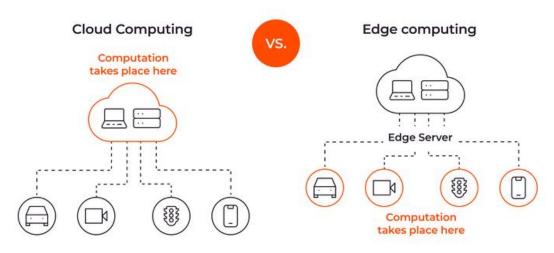


Fig1. Cloud vs Edge computing from Business Benefits of Al Inference at the Edge

Benefits of Edge AI for Resource-Constrained Devices

Benefit	Example	
Reduced Latency & Real-Time Inference	Local processing removes cloud delays — essential for safety-critical applications like autonomous driving.	
⊕ Enhanced Data Security & Privacy	Sensitive information (e.g., health or surveillance data) stays on-device, reducing exposure risks and ensuring compliance.	
🖔 Reduced Bandwidth & Lower Costs	Only processed data is sent to the cloud, lowering data transfer needs — beneficial in low-connectivity or high-cost regions.	
Low Power Consumption / Energy Efficiency	TinyML models enable milliwatt-level power use, ideal for battery-powered devices.	
Scalability and Local Operation	Edge devices continue working even when cloud connectivity is limited or unavailable.	

Constraints and Challenges in Edge AI Deployment

Challenge Area	Implication / Example	
Model Size / Complexity	Requires drastic model compression and simplification.	
Hardware Constraints	Typical microcontrollers can't run large models efficiently.	
Memory Limitations	Necessitates aggressive quantization and model reduction.	
♣ Optimization Need	Demands tailored pruning, quantization, and distillation.	
Optimization Implementation	Sparse models lack hardware/software support, increasing engineering effort.	

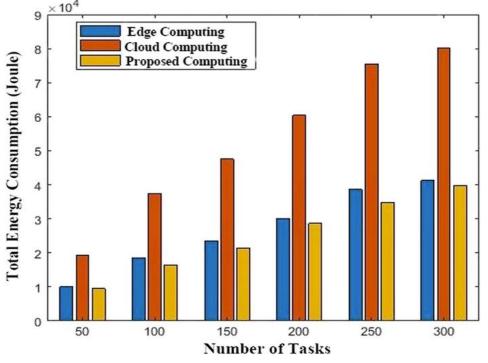


Fig2. Cloud vs Edge energy consumption from: Transactions on Emerging Telecommunications Technologies

Sibiu Innovation Days 06-07 November, Sibiu - RO

EMERGING DISRUPTIVE TECHNOLOGIES: Balancing Innovation, Risks, and Societal Impact

Application Scenarios for Edge Al

Healthcare Devices: Patient monitoring, anomaly detection, and on-device diagnostics.

> **Smart Cities: Traffic** management, public safety monitoring, and energy optimization.

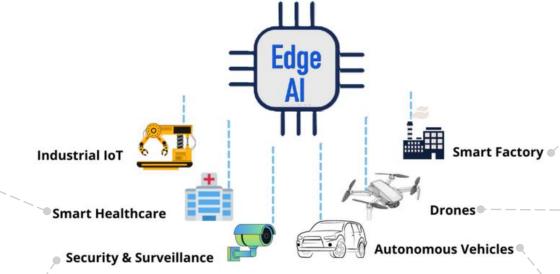


Fig3. Edge AI applications from What are the top edge AI chips of 2025?

Smart Manufacturing: Realtime quality inspection, predictive maintenance, and worker safety.

Autonomous Vehicles & Drones: Obstacle avoidance, route optimization, and sensor fusion.

Autonomous Vehicles & Drones: Obstacle avoidance, route optimization, and sensor fusion.

Sibiu Innovation Days

06-07 November, Sibiu - RO

Model Pruning Techniques for Edge AI

Sibiu IT O

- ■Pruning: Reduces model complexity by removing unimportant weights, neurons, or even layers.
- Unstructured Pruning: Arbitrarily removes individual weights.
- ■Structured Pruning: Removes entire neurons, channels, or filters.
- ■Dynamic Pruning: Adapts pruning during training or inference.
- Benefits: Smaller model size, reduced computational demands, faster inference, lower energy use.

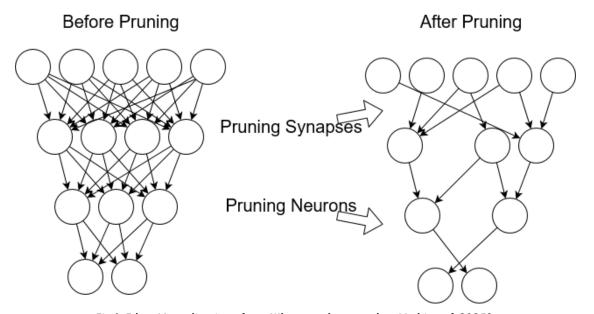


Fig4. Edge Al applications from What are the top edge Al chips of 2025?

Quantization Techniques for Edge Al

- Quantization: Converts model weights and activations from high-precision (e.g., 32-bit float) to lower-precision formats (e.g., 8-bit integer).
 - Post-Training Quantization
 - Quantization-Aware Training
 - Dynamic/Mixed Precision Quantization
- Benefits: Reduces memory usage, speeds up inference, and lowers power consumption, sometimes with negligible accuracy loss.

PRECISION TYPE	SIZE PER ELEMENT	MEMORY FOR 1M VALUES	POTENTIAL SPEED (RELATIVE)
FP32 (32-bit float)	4 bytes	~4 MB	1× (baseline, high precision)
FP16 (16-bit float)	2 bytes	~2 MB	Up to $2 \times -16 \times$ faster (on GPUs with tensor cores). Typically $\sim 2 \times$ in practice.
BF16 (16-bit float)	2 bytes	~2 MB	Similar to FP16 speed (supported on modern HW). Wider range than FP16.
INT8 (8-bit integer)	1 byte	~1 MB	Up to $\sim 4 \times$ faster on CPU/GPU with int8 support. Widely used for inference.
INT4 (4-bit integer)	0.5 byte	~0.5 MB	Theoretical up to ~8× faster (specialized hardware). Currently used in research and specialized applications.

Table 5. Memory spaced used by 1M values

Knowledge Distillation for Edge Models

- Knowledge Distillation: Transfers knowledge from a large teacher model to a compact student model.
- Approach: Train the student with soft labels (probabilities) produced by the teacher.
- Objective: Maintain high accuracy in a smaller, faster, and more efficient model.
- Benefits: Student models generalize better, often outperforming direct training under tight resource limits.

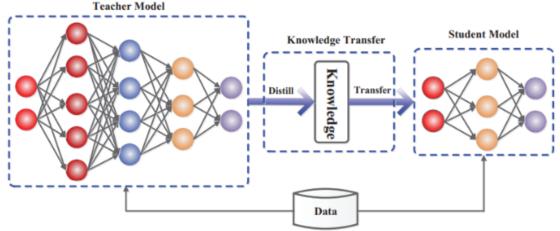


Fig6. Transfer of knowledge from teacher model to a student model from The Big Impact of Small AI: A Guide to Small Language Models

Hardware Alternatives for Edge Al Deployment

- Edge Al Hardware: Includes CPUs, GPUs, NPUs, FPGAs, and custom ASICs (e.g., NVIDIA Jetson, Google Edge TPU, Qualcomm Snapdragon).
- Selection Criteria: Performance (TOPS), power consumption, size, and supported accelerators.
- Trends: Growth in heterogeneous SoC integration for multi-modal processing.

Sibiu Innovation Days

06-07 November, Sibiu - RO

EMERGING DISRUPTIVE TECHNOLOGIES:

Balancing Innovation, Risks, and Societal Impact

Compiler Toolchains for Edge AI Optimization

- Compiler Toolchains: Enhance model execution by converting, optimizing, and deploying Al models for target edge hardware.
- Examples: TensorFlow Lite, ONNX Runtime, Apache TVM, vendor-specific compilers.
- Optimization: Quantization, operator fusion, graph pruning, hardware delegation.
- Role: Ensures models leverage vendor-specific accelerators and meet deployment constraints.

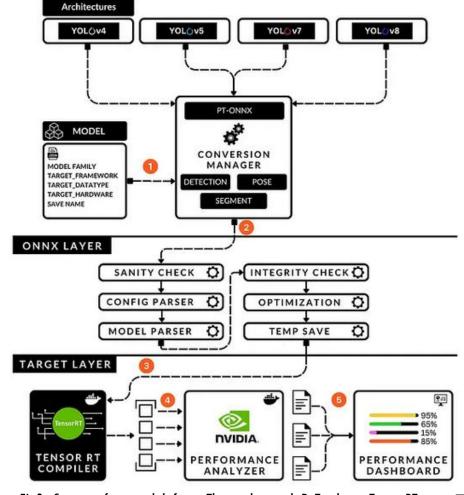
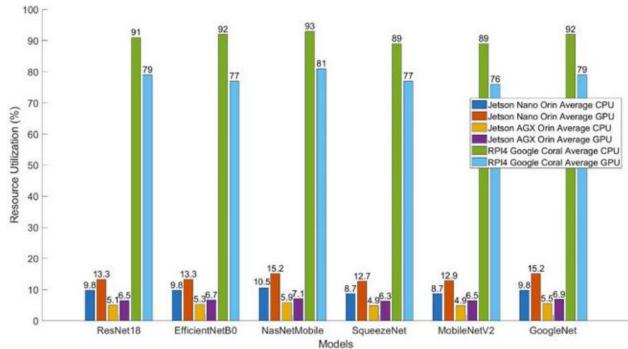


Fig8. Stages of a model from The end-to-end PyTorch to TensorRT pipeline for YOLO models

EMERGING DISRUPTIVE TECHNOLOGIES: Balancing Innovation, Risks, and Societal Impact

Benchmarking Edge Al Models and Platforms

- Benchmarking: Essential for evaluating inference latency, memory usage, throughput, and energy consumption on actual edge platforms.
- Metrics: Initialization time, memory usage, peak power draw, steady-state inference time.
- Key Tools: Vendor SDKs, open-source toolkits, custom scripts, Edge Impulse Studio.
- Importance: Guides design and optimization by exposing real-world device performance and limitations.



Edge AI Frameworks and Development Kits

- Popular Frameworks: TensorFlow Lite, PyTorch (w/ TorchScript), ONNX Runtime, Apache TVM, Edge Impulse.
- Features: Model conversion, quantization, hardware abstraction, cross-platform deployment.
- Ecosystem: Libraries, developer tools, model zoos, documentation, and community support.
- Emergence of Vendor SDKs: Chip vendors provide optimized SDKs for faster development and integration.

Future Trends and Case Studies in Edge AI

- Emerging Trends: Federated learning, privacy-first AI, self-optimizing edge models, neuromorphic chips, autonomous multi-agent systems.
- Case Studies:
 - Autonomous Drones: Real-time adaptation with compact CNNs onboard.
 - Smart Hospitals: Edge Al supporting privacy and adaptive intelligence in patient care.
 - Industrial Robots: Predictive maintenance using streamlined transformers.

Sibiu IT C Cluster

EMERGING DISRUPTIVE TECHNOLOGIES:

Balancing Innovation, Risks, and Societal Impact

06-07 November, Sibiu - RO

Sibiu Innovation Days

SID 2025

